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ABSTRACT—Multiplication is the most resource-

hungry operation in neural networks (NNs). 

Logarithmic multipliers (LMs) simplify 

multiplication to shift and addition operations and 

thus reduce the energy consumption. Since 

implementing the logarithm in a compact circuit 

often introduces approximation, some accuracy 

loss is inevitable in LMs. However, this loss is 

tolerated by the inherent error tolerance of NNs and 

their associated applications. This article proposes 

an improved logarithmic multiplier (ILM) that, 

unlike existing designs, rounds both inputs to their 

nearest powers of two by using a proposed nearest-

one detector (NOD) circuit. Considering that the 

output of the NOD uses a one-hot representation, 

some entries in the truth table of a conventional 

adder cannot occur. Hence, a compact adder is 

designed for the reduced truth table. 

 

I. INTRODUCTION 
Artificial neuron 

Neurons are the main processing units of 

NNs that compute a weighted sum of their inputs 

and send the result through an activation function 

(AF). The AF introduces non-linearity into a 

neuron‟s behaviour and maps the resulting output 

values either into either the interval (-1, 1) or (0, 1) 

[10]. The AF can be either a hard-limiting (e.g., a 

step function) or a soft-limiting function (e.g., a 

sigmoid function) [8]. Fig. 1 shows the structure of 

an artificial neuron. A neuron has n ≥ 2 inputs 

(depending on the network structure) and one 

output. Each input xiis multiplied by its 

corresponding synaptic weight wi; i = 0; 1; :::; n. 

An adder tree is then used to sum up the products. 

The resulting sum is then input to the AF. An 

external bias b is often added to increase or lower 

the input value of the AF [20]. 

 

 

 
 

Feed-forward neural networks 

The two major operating modes for NNs 

are training and inference. The training process is 

usually performed infrequently and off-line and, 

therefore, its energy consumption is less of a 

concern [8]. The inference process, on the other 

hand, is done frequently. Although it is less 

computation intensive than the training process, 

inference still requires significant computation for 

large networks. Fig. 2 shows a simple feed-forward 

NN with n, k, and m neurons in the input, hidden, 

and output layers,respectively. 

Synaptic weights in neuralnetworks 

The n multiplications of xi× wiin Fig. 1, 

where 1 ≤ i ≤ n, are the main bottleneck in the 

performance of NNs. Hence, it is helpful to have 

insight into the synaptic weights when designing 

multipliers for NNs. Here are the three main 

observations that have been found to be helpful: 

 Past research has investigated the effects of 
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reduced precision on the performance of NNs 

and has found that the precision can be safely 

reduced without significant negative impact on 

the accuracy of NNs [5], [6],[7]. 

 The authors in [21] showed that the trained 

weights in NNs are mostly centered near zero. 

Hence, even after up-scaling, the chances of 

having large weights, i.e. weights at both the 

positive and negative ends of the scaled 

spectrum, aresmall. 

 Large synaptic weights are not desirable in 

NNs and it is common to use weight decay 

techniques to reduce them. During weight 

decay, after each update, the weights are 

multiplied by a factor slightly less than 1 to 

prevent them from growing too large[22]. 

 

Consequently, large weights are unlikely to appear 

in trained NNs and limiting them should not 

significantly influence the performance of NNs. 

We exploit this insight in the design of the 

proposed multiplier, more specifically in the design 

of the NOD circuit. 

 

Improved Logarithmic Multipliers: 

Here we propose a method to approximate 

log2N which, unlike the existing approaches, has a 

double-sided error distribution and can be used as a 

more accurate baseline design instead of the 

Mitchell approach. The existing techniques in the 

literature for improving the accuracy of the 

Mitchell method are also applicable to the proposed 

method. 

 

Any positive integer N can be also represented as: 

N = 2
k+1

(1 ─ y) where 0 < y ≤ 1. 

The conventional logarithmic approximation uses 

the highest power of two smaller than the given 

numberN. 

Instead, we propose the approximation given in 

Algorithm 

 

1. Note that 2
k
 ≤ N < 2

k+1
. As shown in Algorithm 

1, when N ─ 2
k
< 2

(k+1)
 ─ N we underestimate the 

value of log2N as k; otherwise, 

 we overestimate it as k +1. 
The exact, Mitchell, and the proposed 

methods for computing log2N are plotted in Fig. 3. 

The k parameter values corresponding to the N 

values, obtained from Algorithm 1, are also shown 

in Fig. 3. Only k ≥ 3 is shown in order to keep the 

figure clear and easy to read. One power-of-two 

interval, i.e. k = 6, is also enlarged and depicted as 

an inset in Fig. 3 to better show the behaviourof the 

two approximate methods compared to the exact 

log2N function. 

 

 

 
 

Note that the proposed approximation 

results in a more than 6 × smaller average error 

(over the range [1, 255]) than the Mitchell method 

(0.0088 vs. 0.0568), which is due to the double-

sided error distribution of the proposed approach. 

With respect to the root mean square error 

(RMSE), the Mitchell approach is slightly more 

accurate than the proposed method (0.0627 vs. 

0.0794). It is also evident in Fig. 3 that the 

magnitude of the error can be larger than the 

Mitchell method for the proposed method. 

However, the error analysis of the resulting 

multipliers with respect to two other error metrics, 

i.e. the common mean relative error distance 

(MRED) and the normalized mean error distance 

(NMED, by the maximum output of the accurate 

design) ([24], [25], [26]) shows that the proposed 

designs are actually more accurate. This occurs 

because using the proposed method for 

approximating log2N, the errors are likely to cancel 

out each other and, therefore, the proposed 

multiplier‟s accuracy increases. 

 

II. METHODOLOGY: 
High-level description of the ILM design 

The proposed ILM first transforms the multiplicand 

A and multiplier B to the closest powers of two 

plus an additional term, as givenby: 

As shown in (3), the three most significant 

terms are all multiples of powers of two that can be 

efficiently implemented as left-shift operations in 

hardware. In this design, the least significant term 

(q1q2) is ignored and left as the approximation 

error. A more detailed description of the ILM is 
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provided in Algorithm 2, where NOD, PE and DEC 

denote the nearest-one detector, the priority 

encoder, and the decoder, respectively. Detailed 

descriptions of these three components are given in 

the following subsection. 

 

Hardware Implementation 

The ILM can be implemented by either: 

(1) implementing the logic to calculate the nearest 

powers of two, or (2) using look-up tables (LUTs). 

We decided not to use LUTs as that would increase 

the memory usage, which is often a serious 

bottleneck for neural network applications [4], [8]. 

The block diagram of the 8-bit ILM is given in Fig. 

4(a). The NOD circuits (Figs. 4(b) and 4(c)) are 

based on a leading-one detector (LOD) circuit. 

However, unlike the LOD, the NODs find the 

nearest power of two to a given input. Similar to 

some existing LODs [27], [28], the proposed NODs 

evaluate from the MSB to the LSB. The priority 

encoder (PE) in Fig. 4(a) determines the number of 

required shifts based on the NOD‟s output. The two 

residue terms q1 and q2 are also calculated and 

shifted according to the k2 and k1 values, 

respectively, and a decoder generates the most 

significant term, 2
k1+k2

 . Finally, the three resulting 

terms are summed up to obtain the approximate 

product. For hardware savings, we used the PE 

proposed in [23]. Fig. 4(b) depicts the design of the 

proposed NOD, where I and O are the primary 

input and output signals, respectively. The design is 

a simplified version of the NOD in [19]. Normally, 

nine bits are needed to represent the nearest power 

of two to an 8-bitinput. 

However, as previously discussed, large 

synaptic weights are unlikely to appear in trained 

NNs and removing them would not significantly 

influence the performance of a NN. Hence, the 

NOD in [19] is simplified by rounding down the 

output of the NOD to the largest power of two 

representable in 8 bits, i.e. 128. In other words, up-

rounding is not performed if the nearest power of 

two is greater than 128. This will not have a 

significant detrimental impact on the performance 

ofNNs. 

Note that the ILM needs to use the sign-

magnitude representation for applications that 

require signed multiplications. It may not be as 

hardware-efficient as the 2‟s complement 

representation when multiply-accumulate 

operations are required. However, it is widely-used 

for logarithmic and non-logarithmicarithmetic 

circuits that are designed for unsigned numbers, 

e.g. [8], [9], [10]. Using this method, the sign bits 

of the two input operands are XOR-ed to obtain the 

sign of the final product and only the magnitude is 

computed using the described designhere. 

 
 

In order to further improve the hardware 

efficiency, we also propose a novel adder. This 

adder is used in the final stage, i.e. the adder that 

produces A × B in Fig. 4(a). There are three inputs 

to this adder (i.e., 2
k1+k2,

 q1×2
k2

, and q2×2
k1

, step 

12 in Algorithm 2), hence an adder tree composed 

of two adders is required. The conventional 8- bit 

adder (composed of conventional FAs) is used to 

add q1×2
k2

 and q2×2
k1

 and the proposed adder is 

used to add the result to the third term, 2
k1+k2

 

 Fig. 4(a). Note that the proposed adder is 

not an approximate design, however it has a 

simplified structure. Since 2
k1+k2

 is in a one-hot 

representation, the structure of the 8-bit adder can 

be modified and simplified accordingly. The truth 

tables for both the conventional and the proposed 

FAs are shown in Table 1. Note that the “not 

applicable” (N/A) entries in Table 1 cannot happen 

because there is only one „1‟ in one of the inputs. If 

A is a one hot number and the „1‟ is at bit position 

i, then it is not possible to have a carry in from less 

significantpositions. 
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III. RESULTS: 

 
Fig. 5: Simulation Results of ILM 

 

As shown in the Fig. 5, the results of the ILM 

match with the proposed algorithm and thus the 

hardware implementation is done and validated. 

Fig. 6 shows the synthesized circuit for this 

algorithm. 

 
Fig. 6: Synthesized Circuit of proposed ILM 

The proposed adder is also integrated in the design 

and is named as “last adder”. 

 

IV. CONCLUSION: 
This work proposes a novel approximation 

method to ef- ficiently compute log2N . Using this 

method, an improved logarithmic multipliers (ILM) 

is designed. The proposed ILM is more accurate 

and has the smallest MRED values compared to 

other logarithmic designs in  theliterature.  We 

observed that a few LSBs can be approximated in 

the ILM for saving hardware without a significant 

effect on its accuracy. For example, ILM with five 

approximation bits, ILM-5 can be 6.78%-17.48% 

more power-efficient and up to 6.07% smaller than 

the recent design in [17]. Finally, two well-known 

NNs were considered as benchmark applica- tions, 

for which the proposed designs show a higher top-    

1 classification accuracy than the other designs. 

The exact multipliers in both NNs were replaced 

with LMs and the ILM-5 resulted in the most 

energy-efficient NN structure. Interestingly, higher 

classification accuracies are obtained for the 

CIFAR-10 dataset by using the ILM compared to 

the use of exact (and other LM)multipliers 
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